Генераторы импульсов (мультивибраторы, автогенераторы)

Полезные советы

История

Генераторы импульсов (мультивибраторы, автогенераторы)
Рисунок из статьи Абрахама и Блоха — принципиальная схема мультивибратора, выполненного на электровакуумных триодах

Мультивибратор изобретён в годы Первой Мировой войны французскими учеными Анри Абрахамом и Эженом Блохом и впервые описан в статье, опубликованной в журнале Annales de Physique в 1919 г.

Название мультивибратор для устройства предложил голландский физик ван дер Поль, и отражает тот факт, что в спектре прямоугольных колебаний мультивибратора присутствует множество высших гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»).

Некоторые типы и классификация мультивибраторов


Электрическая принципиальная схема моностабильного транзисторного мультивибратора (одновибратора).


Электрическая принципиальная схема бистабильного мультивибратора (триггера).

Существуют три типа мультивибраторов в зависимости от режима работы:

  • нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое. При этом не обязателен внешний сигнал синхронизации, если не требуется захват частоты колебаний.
  • моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов, переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
  • бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключён из одного состояния в другое подачей внешних импульсов. Такие устройства называют бистабильными триггерами. Такие триггеры иногда называют «мультивибраторами», что не корректно, так эти триггеры есть лишь подкласс мультивибраторов но никак не мультивибраторы вообще.

Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор генерирует импульсы только тогда, когда на его вход поступают синхронизирующие сигналы.

Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся синхронизовать частоту колебаний автоколебательного мультивибратора под частоту синхронизирующего сигнала или сделать кратной ей (режим «захвата частоты») для автоколебательных мультивибраторов.

Общие принципы работы мультивибратора

Как сказано в энциклопедии, «симметричный мультивибратор — это двухкаскадный усилитель, охваченный положительной обратной связью». Посмотрим на схему:

Двухкаскадный усилитель с обратной связью

Рис. 1. Двухкаскадный усилитель с положительной обратной связью

Если Вы читали статью об усилительном каскаде на транзисторе, то все действующие лица на этой схеме Вам хорошо знакомы. Это разделительный конденсатор C, базовый резистор Rб, задающий ток смещения, и Rк в качестве нагрузки. И таких каскада здесь два, они абсолютно одинаковы.

Что необычно — это провод обратной связи (на схеме показан красным), который замыкает наш двухкаскадный усилитель в кольцо. Именно благодаря положительной обратной связи наш усилитель превращается в генератор, управляя сам собой и поддерживая незатухающие колебания.

Процессы, происходящие в мультивибраторе

Давайте теперь более детально разберём, какие электронные процессы происходят в мультивибраторе. Но для начала перерисуем его схему более «традиционным» образом, подчёркивая симметричность:

Схема симметричного мультивибратора

Рис. 2. Та же схема, скомпонованная по-другому

Можете сравнить и убедиться, что это та же самая схема, что на предыдущем рисунке. Я оставил прежние обозначения элементов, чтобы легче было понять, к какому именно из двух каскадов относится та или иная деталь.

Включение питания

В первый момент после включения питания оба транзистора начинают открываться. Откуда берётся открывающий ток? Рассмотрим на примере транзистора T1

Процессы в мультивибраторе в момент включения питания

Рис. 3. Момент включения питания: токи, открывающие транзистор

Первый, очевидный путь — через Rб1, на рисунке синяя стрелка. Второй, не столь очевидный — через конденсатор C1. Не будем забывать, что в первый момент времени конденсатор разряжен, его сопротивление практически нулевое, и в цепи возникает ток заряда через Rк2 — С1 — эмиттерный переход T1. Этот путь показан красной стрелкой.

Тут важно отметить, что коллекторные сопротивления Rк в этой схеме значительно меньше базовых Rб, как минимум на порядок, а то и на несколько.  Значит, «красная» составляющая в первый момент будет давать больший вклад.

Принцип действия «классического» двухтранзисторного мультивибратора

Схема может находиться в одном из двух нестабильных состояний и периодически переходит из одного в другое и обратно. Фаза перехода очень короткая относительно длительности нахождения в состояниях благодаря глубокой положительной обратной связи, охватывающей два каскада усиления.

Пусть в состоянии 1 Q1 закрыт, Q2 открыт и насыщен, при этом C1 быстро заряжается током открытого базового перехода Q2 через R1 и Q2 почти до напряжения питания, после чего при полностью заряженном C1 через R1 ток прекращается, напряжение на C1 равно (ток базы Q2)·R2, а на коллекторе Q1 — напряжению питания.

При этом напряжение на коллекторе Q2 невелико (равно падению напряжения на насыщенном транзисторе).

C2, заряженный ранее в предыдущем состоянии 2 (полярность по схеме), медленно разряжается через открытый Q2 и R3. При этом напряжение на базе Q1 отрицательно и этим напряжением он удерживается в закрытом состоянии. Запертое состояние Q1 сохраняется до того, пока C2 не перезарядится через R3 и напряжение на базе Q1 не достигнет порога его отпирания (около +0,6 В). При этом Q1 начинает приоткрываться, напряжение его коллектора снижается, что вызывает начало запирания Q2, напряжение коллектора Q2 начинает увеличиваться, что через конденсатор C2 ещё больше открывает Q1. В результате в схеме развивается лавинообразный регенеративный процесс, приводящий к тому, что Q1 переходит в открытое насыщенное состояние, а Q2 наоборот полностью запирается.

Далее колебательные процессы в схеме периодически повторяются.

Длительности нахождения транзисторов в закрытом состоянии определяются постоянными времени для Q2 — T2 = С1·R2, для Q1 — T1 = C2·R3.

Номиналы R1 и R4 выбираются намного меньшие, чем R3 и R2, чтобы зарядка конденсаторов через R1 и R4 была быстрее, чем разрядка через R3 и R2. Чем больше будет время зарядки конденсаторов, тем положе окажутся фронты импульсов. Но отношения R3/R1 и R2/R4 не должны быть больше, чем коэффициенты усиления соответствующих транзисторов, иначе транзисторы не будут открываться полностью.

Симметричный мультивибратор на транзисторах

Принцип работы состоит в переходе из одного нестабильного состояния (Q1 закрыт, Q2 открыт) в другое (Q1 открыт, Q2 закрыт).

Начнем с первого состояния: Q1 закрыт, Q2 открыт.

Конденсатор С1 быстро заряжается идет через «меньший» резистор R4 и базовый переход Q2. Одновременно с этим через открытый Q2 через «больший» резистор R2 медленно разряжается C2, отрицательное напряжение на котором держит в запертом состоянии Q1.

В процессе дальнейшего перезаряда С2 на базе Q1 появляется уже положительное, отпирающее напряжение, и Q1 начинает открываться. Ток через него возрастает, снижается напряжение на коллекторе Q1 и базе Q2, что вызывает его запирание.

Напряжение на коллекторе Q2 увеличивается и через конденсатор C2 еще сильнее открывает Q1.

Процесс открывания Q1 ускоряет запирание Q2, и процесс происходит практически лавинообразно, и переход из одного состояния в другое происходит очень быстро.

Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2

В общем, транзисторы периодически друг друга открывают и закрывают.

Теперь немного о расчете элементов.

Период состоит из двух частей t1 и t2, зависящих от сопротивлений R2, R3 и емкостей C1, C2:

t1 = 0,7 x R3 x C1;

t2 = 0,7 x R2 x C2

Для примера, в схеме на картинке выше период равен t1 + t2 = 2*0,7*22 кОм*0,1 мкФ = 3,08 мс.

Период 3,3 мсПериод 3,3 мс

От сопротивления резисторов R1 и R4 зависит длительность спада импульсов: чем меньше сопротивление, тем быстрее спад.

При R1 = R4 = 470 ОмПри R1 = R4 = 470 Ом

Главный недостаток такой схемы — медленные спады. Этот недостаток исправляют в схеме:

Нестабильный мультивибратор — работа и принципы

Мультивибраторы — это еще одна форма осцилляторов. Генератор представляет собой электронную схему, которая способна поддерживать сигнал переменного тока на выходе. Он может генерировать прямоугольные, линейные или импульсные сигналы. Для колебания генератор должен удовлетворять двум условиям Баркгаузена:

Для выполнения обоих условий генератор должен иметь некоторую форму усилителя, и часть его выхода должна быть регенерирована на вход. Если коэффициент усиления усилителя меньше единицы, схема не будет колебаться, а если она больше единицы, схема будет перегружена и будет давать искаженную форму волны. Простой генератор может генерировать синусоидальную волну, но не может генерировать прямоугольную волну. Прямоугольная волна может быть сформирована с помощью мультивибратора.

Мультивибратор — это форма генератора, которая имеет две ступени, благодаря которым мы можем получить выход из любого из состояний. Это в основном две схемы усилителя, скомпонованные с регенеративной обратной связью. При этом ни один из транзисторов не проводит одновременно. Одновременно только один транзистор проводит, а другой находится в выключенном состоянии. Некоторые схемы имеют определенные состояния; состояние с быстрым переходом называется процессами переключения, где происходит быстрое изменение тока и напряжения. Это переключение называется триггерным. Следовательно, мы можем запустить цепь внутри или снаружи.

Одним из них является стабильное состояние, в котором цепь остается навсегда без какого-либо запуска.
Другое состояние является нестабильным: в этом состоянии схема остается в течение ограниченного периода времени без какого-либо внешнего запуска и переключается в другое состояние. Следовательно, использование многовибарторов осуществляется в двух состояниях цепей, таких как таймеры и триггеры.

Нестабильный мультивибратор с использованием транзистора

Это свободно работающий генератор, который непрерывно переключается между двумя нестабильными состояниями. При отсутствии внешнего сигнала транзисторы поочередно переключаются из состояния отключения в состояние насыщения на частоте, определяемой постоянными времени RC цепей связи. Если эти постоянные времени равны (R и C равны), то будет генерироваться прямоугольная волна с частотой 1 / 1,4 RC. Следовательно, нестабильный мультивибратор называется генератором импульсов или генератором прямоугольных импульсов. Чем больше значение базовой нагрузки R2 и R3 по отношению к нагрузке коллектора R1 и R4, тем больше коэффициент усиления по току и острее будет край сигнала.

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Схема Объяснение

нестабильный мультивибратор состоит из двух поперечных связи усилителей RC.
Схема имеет два нестабильных состояния
Когда V1 = НИЗКИЙ и V2 = ВЫСОКИЙ, тогда Q1 ВКЛ и Q2 ВЫКЛ
Когда V1 = ВЫСОКИЙ и V2 = НИЗКИЙ, Q1 ВЫКЛ. и Q2 ВКЛ.
При этом R1 = R4, R2 = R3, R1 должно быть больше, чем R2
C1 = C2
При первом включении цепи ни один из транзисторов не включен.
Базовое напряжение обоих транзисторов начинает увеличиваться. Любой из транзисторов включается первым из-за разницы в легировании и электрических характеристиках транзистора.

Рис. 1: Принципиальная схема работы транзисторного нестабильного мультивибратора

Принципиальная схема работы транзисторного нестабильного мультивибратора

Мы не можем сказать, какой транзистор проводит первым, поэтому мы предполагаем, что Q1 проводит первым, а Q2 выключен (C2 полностью заряжен).

Q1 проводит, а Q2 отключен, следовательно, VC1 = 0 В, так как весь ток на землю из-за короткого замыкания Q1, и VC2 = Vcc, так как все напряжение на VC2 падает из-за разомкнутой цепи TR2 (равно напряжению питания).
Из-за высокого напряжения VC2 конденсатор C2 начинает заряжаться через Q1 через R4, а C1 начинает заряжаться через R2 через Q1. Время, необходимое для зарядки C1 (T1 = R2C1), больше, чем время, необходимое для зарядки C2 (T2 = R4C2).
Так как правая пластина C1 подключена к базе Q2 и заряжается, значит, у этой пластины высокий потенциал, и когда она превышает напряжение 0,65 В, она включается Q2.
Поскольку C2 полностью заряжен, его левая пластина имеет напряжение -Vcc или -5V и подключена к базе Q1. Следовательно, он выключается Q2
TR Теперь TR1 выключен, и Q2 проводит, следовательно, VC1 = 5 В и VC2 = 0 В. Левая пластина C1 ранее находилась под напряжением -0,65 В, которое начинает подниматься до 5 В и подключается к коллектору Q1. C1 сначала разряжается от 0 до 0,65 В, а затем начинает заряжаться через R1 через Q2. Во время зарядки правая пластина С1 имеет низкий потенциал, который выключает Q2.
Правая пластина C2 подключена к коллектору Q2 и предварительно находится на + 5В. Таким образом, C2 сначала разряжается от 5 В до 0 В, а затем начинает заряжаться через сопротивление R3. Левая пластина C2 во время зарядки находится под высоким потенциалом, который включает Q1, когда достигает напряжения 0,65 В.

Рис. 2: Принципиальная схема работы транзисторного нестабильного мультивибратора

Принципиальная схема работы транзисторного нестабильного мультивибратора

Теперь Q1 проводит, а Q2 выключен. Вышеуказанная последовательность повторяется, и мы получаем сигнал на обоих коллекторах транзистора, который не в фазе друг с другом. Для получения идеальной прямоугольной волны любым коллектором транзистора мы принимаем как сопротивление коллектора транзистора, базовое сопротивление, то есть (R1 = R4), (R2 = R3), а также то же значение конденсатора, что делает нашу схему симметричной. Следовательно, рабочий цикл для низкого и высокого значения выходного сигнала является тем же, который генерирует прямоугольную волну
Constant Постоянная времени формы сигнала зависит от базового сопротивления и коллектора транзистора. Мы можем рассчитать его период времени по: Постоянная времени = 0.693RC

Ждущий мультивибратор (одновибратор, моностабильный мультивибратор)

В этой схеме лавинного процесса нет.

Транзистор Q7 заперт отрицательным смещением, Q8 открыт напряжением на резисторе R26.

Спад импульса на входе успевает пройти через С10 и закрыть Q8. За это время на базе Q7 успевает проскочить положительный импульс, открывающий его. Конденсатор С10 начинает перезаряжаться.

Из-за перезарядки на базе Q8 будет отрицательное напряжение, которое будет удерживать его в закрытом состоянии. После окончания импульса С10 разрядится через R26 за время 0,7 x R26 x C10. В это время на выходе схемы и будет положительный импульс.

Для примера: 0,7 x R26 x C10 = 0,7*47 кОм * 0,01 мкФ = 329 мкс.

Длина импульса ~361 мкс, примерно совпадает Длина импульса ~361 мкс, примерно совпадает

Ну, что мы все про транзистор да про транзисторы. Уже давно операционники изобрели.

Частота мультивибратора

Отметим, что заряд конденсатора через Rб продолжается сравнительно долго по времени, а вот переключение транзисторов происходит практически мгновенно. Поэтому мультивибратор генерирует прямоугольные импульсы. А их частота определяется временем заряда конденсаторов:

f = 1.443 / (C1*Rб1 + C2*Rб2)

где f — частота (Гц), C — ёмкость в фарадах, R — сопротивление в омах

Остаётся добавить парочку технических замечаний. Первое: у мультивибратора два выхода, сигнал можно снимать и с коллектора T1 и с коллектора T2. Эти два сигнала находятся в противофазе, в некоторых схемах используется это свойство и задействованы оба сигнала. При подключении нагрузки важно не зашунтировать транзистор, иначе есть риск внести искажения в работу мультивибратора, или даже вовсе сорвать генерацию. Лучше всего нагрузку подключать параллельно коллекторному сопротивлению.

Ну и второе замечание. Очевидное, но без его упоминания статья была бы неполная: мы разбираем здесь схему на основе транзисторов n-p-n, но точно также мультивибратор можно построить на транзисторах p-n-p, поменяв полярность питания. А также на радиолампах, операционных усилителях, логических элементах и т. д. — главное, чтобы были два усилительных каскада, охваченных ОС. Одна из таких схем будет приведена ниже.

Выходные формы импульса

Выходное напряжение имеет форму, приблизительно квадратной формы волны. Считается ниже транзистора Q1. В состоянии 1 , Q2 база-эмиттер в обратном направлении и конденсатор С1 «отцепленный» от земли. Выходное напряжение включенного транзистора Q1 быстро меняется от высокого(пределы: более 1кВ) к низкому(пределы: до 250 В), так как это низко-резистивного выход, то загружается высокий импеданс нагрузки (последовательно соединенных конденсаторов С1 и высокоомных базу резистор R2). Во время состояния 2 , Q2 база-эмиттер в прямом смещением и конденсатор С1 «подключили» к земле. Выходное напряжение выключенного транзистора Q1 изменяется экспоненциально от низкого до высокого, так как это относительно высокий резистивный выход, то загружается низкий импеданс нагрузки (емкость C1). Это для выходного напряжения R 1 C 1 интегрирующей цепи. Чтобы приблизиться к необходимой площади сигнала,нужно, чтобы ток коллектора резисторов был ниже сопротивления. База резисторов должна быть достаточно низкой, чтобы насытить транзисторы в конце восстановления (R B <β.r c=»»»»>

Начальное питание

Однако, если схема временного хранения и с высокой базы, длиннее, чем требуется для полной зарядки конденсаторов, то схема будет оставаться в стабильном состоянии, как с базы на 0,6 В, и коллекторы на 0 В, и оба конденсатора разряжаются до -0,6 В. Это может произойти при запуске без внешнего вмешательства, если R и С и очень мало.

Защитные компоненты

Хотя это и не основополагающее значение для работы схемы, диоды соединенные последовательно с базой или эмиттером транзисторов необходимы, чтобы предотвратить переход база-эмиттер, их гонят в обратном направлении пробоя, когда напряжение питания превышает V EB напряжение пробоя, как правило, около 5 -10 вольт для кремниевых транзисторов общего назначения.

Способы подключения нагрузки к симметричному мультивибратору

Прямоугольные импульсы снимаются с двух точек симметричного мультивибратора

– коллекторов транзисторов. Когда на одном коллекторе присутствует «высокий» потенциал, то на другом коллекторе – «низкий» потенциал (он отсутствует), и наоборот – когда на одном выходе «низкий» потенциал, то на другом — «высокий». Это наглядно показано на временном графике, изображённом ниже.

Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.

sposoby i shema podkljuchenija nagruzki k simmetrichnomu multivibratoru

Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.

На примере показано подключение низкоомной динамической головки к мультивибратору. Добавочный резистор повышает входное сопротивление буферного каскада, и тем самым исключает влияние буферного каскада на транзистор мультивибратора. Его значение должно не менее, чем в 10 раз превышать значение коллекторного резистора. Подключение двух транзисторов по схеме «составного транзистора» значительно усиливает выходной ток. При этом, правильным является подключение базово-эмиттерной цепи буферного каскада параллельно коллекторному резистору мультивибратора, а не параллельно коллекторно-эмиттерному переходу транзистора мультивибратора.

Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.

Если вы хотите подключить к мультивибратору обычные светодиоды– сделать «мигалку», то для этого буферные каскады не требуются. Их можно подключить последовательно с коллекторными резисторами. Связано это с тем, что ток светодиода мал, и падение напряжения на нём во время работы не более одного вольта. Поэтому они не оказывают никакого влияния на работу мультивибратора. Правда это не относится к сверхярким светодиодам, у которых и рабочий ток выше, и падение напряжения может быть от 3,5 до 10 вольт. Но в этом случае есть выход – увеличить напряжение питания и использовать транзисторы с большой мощностью, обеспечивающей достаточный ток коллектора.

Обратите внимание, что оксидные (электролитические) конденсаторы подключаются плюсами к коллекторам транзисторов. Связано это с тем, что на базах биполярных транзисторов напряжение не поднимается выше 0,7 вольта относительно эмиттера, а в нашем случае эмиттеры – это минус питания. А вот на коллекторах транзисторов напряжение изменяется почти от нуля, до напряжения источника питания. Оксидные конденсаторы не способны выполнять свою функцию при их подключении обратной полярностью. Естественно, если вы будете применять транзисторы другой структуры (не N-P-N, a P-N-P структуры), то кроме изменения полярности источника питания, необходимо развернуть светодиоды катодами «вверх по схеме», а конденсаторы – плюсами к базам транзисторов.

Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?

На что влияют номиналы коллекторных резисторов? Я встречал в некоторых бездарных интернетовских статьях, что номиналы коллекторных резисторов незначительно, но влияют на частоту мультивибратора. Всё это полная чушь! При правильном расчёте мультивибратора, отклонение значений этих резисторов более чем в пять раз от расчётного, не изменит частоты мультивибратора. Главное, чтобы их сопротивление было меньше базовых резисторов, потому, что коллекторные резисторы обеспечивают быстрый заряд конденсаторов. Но зато, номиналы коллекторных резисторов являются главными для расчёта потребляемой мощности от источника питания, значение которой не должно превышать мощность транзисторов. Если разобраться, то при правильном подключении они даже на выходную мощность мультивибратора прямого влияния не оказывают. А вот длительность между переключениями (частота мультивибратора) определяется «медленным» перезарядом конденсаторов. Время перезаряда определяется номиналами RC цепочек – базовых резисторов и конденсаторов (R2C1 и R3C2).

Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.

Длительность перезаряда конденсаторов определяется простой формулой, где

Тау– длительность импульса в секундах,
R– сопротивление резистора в Омах,
С– ёмкость конденсатора в Фарадах:

Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:

При равенстве R2=R3

С1=С2, на выходах мультивибратора будет «меандр» — прямоугольные импульсы с длительностью равной паузам между импульсами, который вы видите на рисунке.

Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:

Частота колебаний F (Гц) связана с периодом Т(сек) через соотношение:

Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере.

Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.

Особенности подбора деталей

Разные схемы от разных авторов имеют различные номиналы радиоэлементов. И начинающий любитель радио (да и более опытные иногда) пребывает в растерянности — что конкретно туда паять чтоб не пришлось потом по 10 раз перепаивать при настройке?

Генераторы импульсов (мультивибраторы, автогенераторы)
Генераторы импульсов (мультивибраторы, автогенераторы)

Я провёл ряд экспериментов и результатами сейчас буду делиться далее:

Транзисторы. Любые N-P-N с высоким коэффициентом усиления

Не важно какие именно — брал наугад импортные из большой коробки даже не читая маркировку. Просто прикидывал мультиметром в диодном режиме прозвонки его структуру (переходы от базы к коллектору и к эмиттеру должны звониться как диоды)

Работали все.

Конденсаторы. Если нужно быстрое перемигивание — ставьте на 10 мкФ, если медленнее — 50 мкФ. Слишком большую ёмкость брать не стоит, может вообще перестать работать. Но гораздо удобнее настраивать частоту миганий подбирая…

Резисторы. Поставить базовые резисторы можете от 10 кОм, но тогда конденсаторы будут разряжаться быстро и соответственно быстро мигать. Чтоб замедлить это дело выгоднее не конденсаторы увеличивать, а сопротивления. Поставьте на 300 кОм и будет вам счастье.

Схема ждущего мультивибратора и принцип её работы

Наиболее распространённой схемой ждущего мультивибратора является схема на основе биполярных транзисторов с эмиттерной связью между ними. Данная схема представлена на рисунке ниже.

Схема ждущего мультивибратора.

В данной схеме в качестве активных элементов используются транзисторы VT1 и VT2, резисторы R1 и R2 предназначены для установления режима работы транзистора VT1. Резисторы R3 и R6 – коллекторные нагрузки транзисторов, конденсатор C2 и резистор R5 используются для задания параметров импульса, через резистор R4 осуществляется обратная связь по току, конденсатор C1 – элемент цепи запуска ждущего мультивибратора.

Для понимания работы ждущего мультивибратора ниже представлены временные диаграммы его работы.

Генераторы импульсов (мультивибраторы, автогенераторы)
Генераторы импульсов (мультивибраторы, автогенераторы)
Временные диаграммы работы ждущего мультивибратора.

При подаче питания на мультивибратор в нём устанавливается начальный режим работы, при котором транзистор VT1 закрыт, а VT2 находится в состоянии насыщения (открыт). Это достигается при помощи элементов цепей питания транзистора VT1 (резисторы R1, R2, R3 и R4). При этом на выходе мультивибратора присутствует небольшой постоянный уровень напряжения, который определяется в основном резистором R4.

Для того что бы ждущий мультивибратор запустился необходимо на его вход через конденсатор C1 подать импульс тока. Конденсатор C1 предназначен для формирования короткого импульса запуска с крутым фронтом. В результате поступления импульса запуска на базу транзистора VT1 в схеме начинает происходить лавинообразный процесс выработки импульса в следующем порядке: через открытый транзистор VT1 и резистор R5 начинает заряжаться конденсатор C2. Так как R5C2 является дифференцирующей цепочкой, то в момент начала заряда конденсатора на базе VT2 резко уменьшится потенциал, а, следовательно, транзистор закроется и на выходе схемы появится уровень напряжения примерно равный напряжению питания. После зарядки конденсатора C2 до уровня отпирания VT2, транзистор откроется и на выходе мультивибратора установится исходное напряжение. Параметры сформированного импульса полностью определятся параметрами схемы и вычисляются по тем же самым формулам, что и для автогенераторного мультивибратора.

Можно ли собрать схему самостоятельно, печатная плата мультивибратора

Да, можно. Это устройство отлично подойдет для начинающих и для тех, кто интересуется электроникой.

На этой схеме мало деталей, но работает она просто и надежно. Можно собрать схему и навесным монтажом, на монтажной плате или же попробовать свои силы в изготовлении печатной платы — лазерно утюжная технология (ЛУТ).

Из деталей транзисторы КТ315 можно брать любые, близкие по аналогам. Резисторы 0,125 Вт, а конденсаторы — не меньше питающего напряжения. Питать можно от ЛБП (лабораторного блока питания) или от аккумулятора +12 В, зарядного устройства.

По поводу настройки частоты. Можно поменять частоту при помощи емкости и сопротивления. При помощи резисторов намного проще. Достаточно просто поменять обычный резистор на переменный (не подстроечный). Достаточно из контактов 1-2-3 использовать 1-2 или 3-1.

Чем больше сопротивление — тем меньше шаг регулировки. От переменного резистора можно провести провода и визуально наблюдать за изменением частоты.

Генераторы импульсов (мультивибраторы, автогенераторы)

Генераторы импульсов (мультивибраторы, автогенераторы)

Список используемых деталей

C1. C2 47 мкФ 16 В
HL1, HL2 Любые маломощные светодиоды
R1, R2 30 кОм 0,125 Вт
R3, R4 680 Ом 0.125 Вт
VT1, VT2 КТ315

Как еще можно собрать мультивибратор

Эту схему можно спаять и на обычной макетной плате
Генераторы импульсов (мультивибраторы, автогенераторы)
Или навесным монтажом, но будьте внимательны, чтобы не произошло короткого замыкания — делайте соединения ровными и прямолинейными.

Питание схемы

Схему можно включить как от 12 В, так и от 9 В кроны и даже одного аккумулятора 18650.

Источники
  • https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%B2%D0%B8%D0%B1%D1%80%D0%B0%D1%82%D0%BE%D1%80
  • https://all-electronic.ru/sxemy/generatory/vsyo-o-simmetrichnom-multivibratore
  • https://elektrovrn.ru/multivibrator
  • https://radio-blog.ru/master/princzip-raboty-multivibratora-na-tranzistorah/
  • https://izobreteniya.net/printsip-rabotyi-multivibratora-na-tranzistorah/
  • https://zen.yandex.ru/media/electronic_scribbles/generatory-priamougolnyh-impulsov-multivibratory-6106496f4cf75301f0ce7ba1
  • https://tyt-sxemi.ru/kak-rabotaet-multivibrator/

Оцените статью
knigaelektrika.ru