Передача электроэнергии: популярные способы и альтернативные варианты

Схема передачи электроэнергии от электростанции до потребителя Теория

История мировой электроэнергетики

Электроэнергетика – стратегическая отрасль экономической системы любого государства. История возникновения и развития ЭЭ берёт своё начало с конца XIX столетия. Предтечей появления промышленной выработки электроэнергии являлись открытия основополагающих законов о природе и свойствах электрического тока.

Отправной точкой, когда возникли производство и передача электроэнергии, считают 1892 год. Именно тогда была построена первая электростанция в Нью-Йорке под руководством Томаса Эдисона. Станция стала источником электрического тока для ламп уличного освещения. Это был первый опыт перевода тепловой энергии от сгорания угля в электричество.

С тех пор началась эра массового строительства тепловых электростанций (ТЭС), работающих на твёрдом топливе – энергетическом угле. С развитием нефтяной промышленности появились огромные запасы мазута, которые образовывались в результате переработки нефтепродуктов. Были разработаны технологии получения носителя тепловой энергии (пара) от сжигания мазута.

С тридцатых годов прошлого века получили широкое распространение гидроэлектростанции (ГЭС). Предприятия стали использовать энергию ниспадающих потоков воды рек и водохранилищ.

В 70-е годы началось бурное строительство атомных электростанций (АЭС). Одновременно с этим стали разрабатываться и внедряться альтернативные источники электроэнергии: это ветровые установки, солнечные батареи, щелочно-кислотные геостанции. Появились мини установки, использующие тепло для получения электричества в результате химических процессов разложения навоза и бытового мусора.

Как это работает

Передача электроэнергии на расстояние

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Схема передачи электричества без проводов

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

ВЛ

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности – P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач – тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство – чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Подстанция 110 кВ

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

Трансформатор 10/0,4 кВ

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Маршрут транспортировки

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Высокое напряжение как способ уменьшения потерь

Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями. Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы. Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.

Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:

  • применение высокотемпературных сверхпроводников;
  • увеличение сечения кабелей и проводов ЛЭП;
  • повышение напряжения в линиях передачи.

За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.

ЛЭП

Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.

Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.

Вам это будет интересно Щупы для мультиметра

Передача электроэнергии: популярные способы и альтернативные варианты
Городская подстанция

От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.

Передача электроэнергии: популярные способы и альтернативные варианты
Силовой ящик многоэтажки

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

Катушки

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Микроволны

Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.

Передача электроэнергии: популярные способы и альтернативные варианты
Микроволновая передача энергии

Лазер

Лазер

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %.

Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Классификация линий электропередач

Беспроводная передача электроэнергии

Существует множество разновидностей ЛЭП. Каждый из видов заточен под свои определённые нужды и задачи. В соответствии с этим, ПУЭ регламентирует следующую классификацию воздушных линий электропередач.

По классу напряжению ЛЭП бывают:

  • низковольтные, до 1 кВ;
  • высоковольтные, свыше 1 кВ.

По назначению:

  • Межсистемные линии с напряжением от 500 кВ и выше;
  • Магистральные, 220-500 кВ;
  • Распределительные, 110-220 кВ;
  • Линии 35 кВ для питания сельхоз потребителей;
  • ЛЭП 1-20 кВ, используемые в пределах одного населённого пункта.

Род электрического тока в ЛЭП подразделяются на:

  • переменный (практически все линии);
  • постоянный ток (встречается редко, в основном 3,3 кВ контактной сети железной дороги).

Способы передачи электроэнергии

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

Схема передачи энергии от электростанции до потребителя

Главная электростанция вырабатывает напряжение порядка 10-12 кВ. Затем оно повышается с помощью трансформатора до более высокого уровня: 35, 110, 220, 400, 500 или 1150 кВ. После по кабельной или воздушной линии энергия передаётся на расстояния от единиц до тысяч километров и попадает на понижающую подстанцию. На ней также установлен трансформатор, который преобразует сотни киловольт снова в 10-12 тысяч вольт. Далее следует ещё один каскад понижения до 380/220 В. Это напряжение является конечным и раздаётся по потребителям, т.е. жилым домам, больницам и т.д.

Трансформаторные подстанции

Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор. Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию. На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.

Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1 км.

реальный опыт по передаче мощности в 10квт

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Передача электроэнергии: популярные способы и альтернативные варианты

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

как передать энергию из космоса на землю

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

передача солнечной энергии на землю от спутника

Этакая «звезда смерти» в наших земных реалиях.

звезда смерти на земле

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).

проблемы при передаче электроэнергии из космоса на землю по беспроводной технологииНо размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

башня тесла для передачи энергии без проводов

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Источники
  • https://ectrl.ru/osveshchenie/peredacha-elektroenergii.html
  • https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html
  • https://samelectrik.ru/kak-proisxodit-peredacha-i-raspredelenie-elektroenergii.html
  • https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html
  • https://oxotnadzor.ru/kak-osushchestvlyayetsya-peredacha-elektroenergii-postoyannym-tokom/
  • https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/

Оцените статью
knigaelektrika.ru